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Abstract 

Strict interventions were successful to control the novel coronavirus (COVID-19) outbreak in China. As 

transmission intensifies in other countries, the interplay between age, contact patterns, social distancing, 

susceptibility to infection and disease, and COVID-19 dynamics remains unclear. To answer these 

questions, we analyze contact surveys data for Wuhan and Shanghai before and during the outbreak and 

contact tracing information from Hunan Province. Daily contacts were reduced 7-9 fold during the 

COVID-19 social distancing period, with most interactions restricted to the household. Children 0-14 

years were 59% (95% CI 7-82%) less susceptible than individuals 65 years and over. A transmission 

model calibrated against these data indicates that social distancing alone, as implemented in China during 

the outbreak, is sufficient to control COVID-19. While proactive school closures cannot interrupt 

transmission on their own, they reduce peak incidence by half and delay the epidemic. These findings can 

help guide global intervention policies. 

 

The novel coronavirus disease 2019 (COVID-19) epidemic caused by SARS-CoV-2 originated in Wuhan 

City, China in December 2019 and quickly spread nationally and globally, with 179,111 cases reported in 

159 countries/territories/areas as of March 17, 2020 (1). A total of 80,894 cases of COVID-19, including 

3,237 deaths, have been reported in mainland China, including 50,005 cases in Wuhan City and 361 cases 

in Shanghai City. The epidemic in Wuhan and in the rest of China slowed down after implementation of 

strict containment measures and movement restrictions (2). However key questions remain about the age 

profile of susceptibility, symptoms, and infectivity with this disease, how social distancing alters 

age-specific contact patterns, and how these factors interact to affect transmission. These questions will 

have a profound effect on the choice of control policies in locations where COVID-19 transmission is 

now intensifying. In this study, we evaluate changes in human mixing patterns brought about by social 

distancing by conducting contact surveys in the midst of the epidemic in two Wuhan and Shanghai. We 
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also estimate age differences in susceptibility to infection and clinical disease based on contact tracing 

information gathered by the Hunan Provincial Center for Disease Control and Prevention (CDC), China. 

Based on those findings, we develop a mathematical transmission model to disentangle how transmission 

is affected by age differences in the biology of COVID-19 infection and disease, and altered mixing 

patterns due to social distancing. In turn, we project the impact of social distancing and school closure on 

COVID-19 transmission. 

 

To estimate changes in age-mixing patterns associated with COVID-19 interventions, we performed 

contact surveys in two cities, Wuhan, the epicenter of the outbreak, and Shanghai, one of the largest and 

most densely populated cities in southeast China. Shanghai experienced extensive importation of 

COVID-19 cases from Wuhan as well as local transmission(3). The surveys were conducted from 

February 1, 2020 to February 10, 2020, as transmission of COVID-19 peaked across China and stringent 

interventions were in place. Participants in Wuhan were asked to complete a questionnaire describing 

their contact behavior (4, 5) on two different days: i) a regular weekday between December 24, 2020 and 

December 30, 2020, before the COVID-19 outbreak was officially recognized by the Wuhan Municipal 

Health Commission (used as baseline); and ii) the day before the interview (outbreak period). A similar 

survey was conducted in Shanghai to obtain information on contacts during the COVID-19 outbreak 

period; contacts for the baseline period were based on a survey using the same design conducted in the 

same city in 2017-2018 (6). Details are given in the Supplementary Material.  

 

We analyzed a total of 1,245 contacts reported by 636 study participants in Wuhan, and 1,296 contacts 

reported by 557 participants in Shanghai. In Wuhan, the average daily number of contacts per participant 

was significantly reduced from 14.6 for a regular weekday (weighted mean contacts by age structure: 14.0) 

to 2.0 for the outbreak period (weighted mean contacts by age structure: 1.9) (p<0.001). The reduction in 

contacts was significant for all stratifications by sex, age group, type of profession, and household size, 

except for pre-school children aged 0-6 years old (Tab. 1). A larger reduction was observed in Shanghai, 

where the average daily number of contacts declined from 20.6 (weighted mean contacts by age structure: 

21.7) to 2.3 (weighted mean contacts by age structure: 2.1). Although an average individual in Shanghai 

reported more contacts than one in Wuhan on a regular weekday, this difference disappeared during the 

COVID-19 outbreak period. 

 

The typical features of age-mixing patterns(5, 6) emerge in Wuhan and Shanghai when we consider the 

regular baseline weekday period (Fig. 1A and 1D). These features can be illustrated in the form of 

age-stratified contact matrices (provided as ready-to-use tables in the Supplementary Materials), where 

each cell represents the average number of contacts that an individual has with other individuals, stratified 

by age groups. The bottom left corner of the matrix, corresponding to contacts between school age 

children, is where the largest number of contacts is recorded. The contribution of contacts in the 

workplace is visible in the central part of the matrix, while the three diagonals (from bottom left to top 

right) represent contacts between household members. In contrast, for the outbreak period where strict 

social distancing was in place, much of the above-mentioned features disappears, essentially leaving the 

sole contribution of household mixing (Fig. 1B and 1E). In particular, contacts between school-age 

individuals are fully removed, as highlighted by differencing baseline and outbreak matrices (Fig. 1C and 

1F). Overall, contacts during the outbreak mostly occurred at home with household members (94.1% in 

Wuhan and 78.5% in Shanghai), thus the outbreak contact matrix nearly coincides with the 

within-household contact matrix in both study sites and the assortativity by age feature observed for 

regular days almost entirely disappear (see Supplementary Materials). 
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To understand the interplay between social distancing interventions, changes in human mixing patterns, 

and outbreak dynamics, we also need to consider potential age differences in susceptibility to infection. 

This is currently a topic of debate, as little information on the age profile of asymptomatic cases is 

available(7, 8). To this aim, we analyzed contact tracing information from detailed epidemiological field 

investigations conducted by the Hunan CDC (Supplement). We calculated the age-specific relative risk of 

infection for close contacts of confirmed COVID-19 index cases. Briefly, all close contacts of COVID-19 

cases reported in Hunan province were placed under medical observation for 14 days and were tested 

using real-time RT-PCR. Those who developed symptoms and tested positive were considered as 

symptomatic confirmed cases, while contacts who tested positive without exhibiting symptoms were 

considered as asymptomatic infections. The total of symptomatic and asymptomatic infections was used 

to estimate the relative susceptibility to infection by age. The ratio of symptomatic cases to total 

infections was used to estimate the relative probability of developing symptoms (see Supplementary 

Material). We found age differences in susceptibility to SARS-CoV2 infection, where young individuals 

(aged 0-14 years) had a lower risk of infection than individual ages 65 years and over (OR=0.41 (95%CI: 

0.18-0.93), p-value=0.026). There was a weak non-significant trend towards lower susceptibility in 

middle-aged adults, relative to seniors (OR=0.76, 95%CI: 0.46-1.24, Tab. 2). These findings are in 

contrast with a previous study in Shenzhen, where susceptibility to infection did not change with age (7). 

Moreover, we found that the relative probability of developing symptoms also increased with age, 

however the difference was not statistically significant (Tab. 2).  

 

Based on the estimated age-specific mixing patterns and susceptibility to COVID-19 infection, we 

developed a SIR model of SARS-CoV-2 transmission and tested the impact of social distancing measures 

on disease dynamics. In the model, the population is divided into three epidemiological categories: 

susceptible, infectious, and removed (either recovered or deceased individuals), stratified by 14 age 

groups. Susceptible individuals can become infectious after contact with an infectious individual 

according to the estimated age-specific susceptibility to infection. Because we did not see age differences 

in the probability of developing symptoms upon infection, we assumed equal infectivity across all age 

groups. The rate at which contacts occur is determined by the estimated mixing patterns in each age group. 

A key parameter regulating the dynamics of the model is the basic reproduction number (R0), which 

corresponds to the average number of secondary cases generated by a primary case in a fully susceptible 

population. The mean time interval between two consecutive generations of cases was taken to be 5.1 

days (2). Details are reported in the Supplementary Materials.  

 

For baseline R0 values in the range 2.0-3.5 associated with a regular weekday contact patterns 

(corresponding to the early phase of COVID-19 spread in Wuhan (9-15)), we find that the profound 

alteration of mixing patterns of the magnitude observed in Wuhan and Shanghai leads to a drastic 

decrease in R0. When we consider contact matrices representing the outbreak period, keeping the same 

baseline disease transmissibility as the pre-intervention period, the reproductive number drops well below 

the epidemic threshold both in Wuhan and Shanghai (Fig. 2A). In an uncontrolled epidemic (without 

intervention measure, travel restriction, or spontaneous behavioral response of the population), we 

estimate the mean infection attack rate to be in the range 64%-92% after a year of SARS-CoV-2 

circulation, with slight variation between Wuhan and Shanghai (variations of about 5%-12%, Fig. 2B). 

On the other hand, if we consider a scenario where social distancing measures are implemented early on, 

as the new virus emerges, the estimated R0 remains under the threshold and thus the epidemic cannot take 

off in either location. Furthermore, we estimate that the magnitude of interventions implemented in 

Wuhan and Shanghai would have been enough to bring the reproduction number below 1.0 for baseline 

R0 up to ~7 in Wuhan and ~11.5 in Shanghai (Fig. 2A). We also conduct sensitivity analyses on 
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assumptions about the susceptibility profile of infections, since there is still uncertainty about this 

parameter (see Supplementary Material). Our conclusions are robust to assuming equal susceptibility in 

all age groups. 

 

Finally, armed with a carefully calibrated model, we turn to assess the impact of a preemptive mass 

school closure. We used the same estimates of relative susceptibility to infection by age as in our main 

analysis (see Supplementary Material for a sensitivity analysis assuming equal susceptibility to infection). 

We considered two different contact pattern scenarios, based on data from Shanghai: contacts estimated 

during vacations period (6) and contacts estimated during regular weekdays, after all contacts occurring in 

school settings have been removed (6). Either one of these scenarios represent a simplification of a school 

closure strategy as during vacations children can still attend additional education, while removing all 

contacts in the school setting does not take into account that, for instance, parents may need to leave work 

to take care of children. We estimated that limiting contact patterns to those observed during vacations 

would interrupt transmission for baseline R0 up to 1.5 (Fig. 2C). Removing all school contacts would do 

the same for baseline R0 up to 1.2. If we apply these interventions to a COVID-19 scenario, assuming a 

baseline R0 of 2 - 3.5, we can achieve a noticeable decrease in infection attack rate and peak incidence, 

and a delay in the epidemic, but transmission is not interrupted (Fig. 2D). For instance, for baseline 

R0=2.5 and assuming a vacation mixing pattern, the peak daily incidence is reduced by about 57%. In the 

corresponding scenario where school contacts are removed, we estimate a reduction of about 20%. 

Overall, school-based policies are not sufficient to entirely prevent a COVID-19 outbreak but they can 

have a significant impact on disease dynamics, and hence on hospital surge capacity. 

 

This study suffers from several limitations. First, the estimated mixing patterns for a regular weekday in 

Wuhan may be affected by recall bias since contacts were assessed retrospectively. For Shanghai, we 

relied on a survey conducted in December 2017 - May 2018, using the same design as the one conducted 

during the outbreak period, thus avoiding recall bias. It is also important to note that changes in contact 

patterns were measured in a context where social distancing was applied together with rapid isolation of 

infected individuals (including suspected cases) and quarantine of close contacts for 14 days. Only a 

small portion of the population in the two study sites was affected by contact tracing and quarantine, thus 

having little to no effect on the average contact patterns of the general population. However, in 

reconstructing the observed epidemics in Wuhan and Shanghai, it is not possible to separate the effects of 

case-based strategies from population wide social distancing. In our simulation model, we estimated the 

effect of social distancing alone; combining social distancing and case-based interventions would have a 

synergistic effect to further reduce transmission. Further, our estimates of age differences in susceptibility 

to infection and probability of developing symptoms are based on active testing of contacts of 57 primary 

confirmed cases. These data suffer from the usual difficulties inherent to identifying epidemiological links 

and index cases. Seroepidemiology studies are currently lacking but will be essential to fully resolve the 

population susceptibility profile of COVID-19.  

 

While the age patterns of contacts were not significantly different between the two study locations during 

the COVID-19 outbreak period, these patterns may not be fully representative of other locations in China 

and abroad, where social distancing measures may differ. Modeling results may possibly be 

underestimating the effect of social distancing interventions as our results account for a decreased number 

of contacts but ignore the impact of increased awareness of the population, which may have also affected 

the type of social interactions (e.g., increased distance between individuals while in contact, or use of face 

mask(16, 17)). Finally, our school closure simulations are not meant to formulate a full intervention 

strategy, which would require identification of epidemic triggers to initiate closures and evaluation of 
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different durations of intervention (5). Nonetheless, our modeling exercise provides an indication of the 

possible impact of a nation-wide preemptive strategy on the infection attack rate and peak incidence. To 

generalize these findings to other contexts, location-specific age-mixing patterns and population 

structures should be considered.   

 

Our study provides evidence that the interventions put in place in Wuhan and Shanghai, and the resulting 

changes in human behavior, drastically decreased daily contacts, essentially reducing them to household 

interactions. Assuming the same scale of contact-distancing measures were to be put in place in other 

locations, human mixing patterns could be captured by data on within-household contacts, which are 

available for several countries around the world (4-6, 18-20). Further research should concentrate on 

refining age-specific estimates of susceptibility to infection, disease, and infectivity, which are 

instrumental to evaluating the impact of school- and work-based control strategies currently under 

consideration worldwide (21, 22). 
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Table 1. Number of contacts by demographic characteristics and location, Wuhan and Shanghai. 

Characteristics 

Wuhan  Shanghai 

Regular weekday  COVID-19 Outbreak 
Difference 

 Regular weekday  COVID-19 Outbreak 
Difference 

N (%)a Mean (95% CI)  N (%)a Mean (95% CI)  N (%) Mean (95% CI)  N (%) Mean (95% CI) 

Overall  624 (100.0) 14.6 (13, 16.3)  627 (100.0) 2.0 (1.9, 2.1) 12.6***  543 (100.0) 20.6 (19, 22.3)  557 (100.0) 2.3 (1.9, 2.7) 18.3*** 

Sex               

Male   300 (48.1) 14.5 (12.2, 16.9)  301 (48) 1.8 (1.7, 2) 12.6***  264 (48.6) 21.3 (18.8, 23.8)  286 (51.3) 2.1 (1.8, 2.3) 19.2*** 

Female  324 (51.9) 14.7 (12.4, 17)  326 (52) 2.1 (2, 2.3) 12.5***  279 (51.4) 20 (17.8, 22.2)  271 (48.7) 2.6 (1.8, 3.3) 17.4*** 

Age group              

0-6 y 12 (1.9) 8.6 (0, 17.7)  12 (1.9) 2.2 (1.5, 2.8) 6.4  51 (9.4) 11.5 (8.1, 14.9)  14 (2.5) 1.9 (1.7, 2.2) 9.6*** 

7-19 y 79 (12.7) 16.2 (12.5, 19.8)  79 (12.6) 2.1 (2, 2.2) 14.1***  83 (15.3) 33 (29.2, 36.9)  55 (9.9) 2.6 (1.7, 3.4) 30.5*** 

20-39 y 254 (40.7) 15.3 (12.6, 17.9)  256 (40.8) 2.1 (1.9, 2.2) 13.2***  132 (24.3) 24.6 (20.8, 28.5)  254 (45.6) 2.2 (2, 2.5) 22.4*** 

40-59 y 221 (35.4) 13.8 (11, 16.6)  220 (35.1) 2 (1.8, 2.2) 11.8***  126 (23.2) 20.4 (17.2, 23.7)  160 (28.7) 2.8 (1.6, 4.1) 17.6*** 

>59 y 58 (9.3) 13.9 (7.3, 20.5)  60 (9.6) 1.4 (1.2, 1.7) 11.6**  151 (27.8) 13.5 (10.9, 16.1)  74 (13.3) 1.6 (1.3, 1.8) 11.9*** 

Type of profession              

Pre-school 12 (1.9) 8.6 (0, 17.7)  12 (1.9) 2.2 (1.5, 2.8) 6.4  43 (7.9) 10 (6.4, 13.5)  14 (2.5) 1.9 (1.7, 2.2) 8*** 

Student 107 (17.1) 14.6 (11.3, 18)  107 (17.1) 2.1 (2, 2.3) 12.5***  100 (18.5) 31.1 (27.7, 34.5)  71 (12.7) 2.5 (1.8, 3.1) 28.6*** 

Employed 391 (62.7) 15.4 (13.3, 17.5)  390 (62.2) 2.1 (1.9, 2.2) 13.2***  236 (43.6) 23.9 (21.2, 26.6)  354 (63.6) 2.5 (2, 3.1) 21.4*** 

Unemployed 30 (4.8) 14.1 (4.2, 24)  31 (4.9) 1.8 (1.3, 2.4) 12.2*  10 (1.8) 12.4 (0.8, 24)  24 (4.3) 1.8 (1.3, 2.4) 10.6 

Retired 84 (13.5) 12.1 (7, 17.2)  87 (13.9) 1.5 (1.3, 1.7) 10.6***  152 (28.1) 12 (9.7, 14.3)  94 (16.9) 1.6 (1.3, 1.8) 10.4*** 

Household size              

1-2 118 (18.9) 11.8 (7.8, 15.8)  121 (19.3) 0.9 (0.6, 1.2) 10.9***  166 (30.6) 15.6 (12.8, 18.4)  199 (35.7) 1.1 (0.8, 1.3) 14.6*** 

3-4 415 (66.5) 13.9 (12.1, 15.7)  415 (66.2) 2 (2, 2.1) 11.9***  306 (56.4) 21.8 (19.8, 23.9)  294 (52.8) 2.4 (2.3, 2.5) 19.4*** 

>4 91 (14.6) 21.5 (15.8, 27.1)  91 (14.5) 3.2 (2.9, 3.4) 17.8***  71 (13.1) 27 (21.3, 32.7)  64 (11.5) 5.9 (2.8, 8.9) 21.1*** 

aCan differ from total sample size (n=636) as it also includes participants who had not recorded contacts during regular weekdays or during the COVID-19 outbreak. Note that reduced denominators indicate 

missing data. Percentages may not total 100 because of rounding. 

*p<0.05, **p<0.01, ***p<0.001.
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Table 2. Age-specific estimates of relative susceptibility to infection and relative probability of 

developing symptoms with COVID-19. 

 

Age group 

(years) 

Susceptibility to infection by age Risk of developing symptoms by age 

Relative risk ratio 

(95%CI) 
p-value 

Relative risk ratio 

(95%CI) 
p-value 

0-14 0.41 (0.18-0.93) 0.026 0.71 (0.40-1.25) 0.133 

15-65 0.76 (0.46-1.24) 0.270 0.93 (0.77-1.13) 0.550 

≥65 1 - 1 - 

 

 

 

Figure 1. A Regular weekday contact matrix for Wuhan. An alternative visualization of this contact 

matrix is shown in Appendix (Sec.11). B Outbreak contact matrix for Wuhan. C Difference between the 

regular weekday contact matrix and the outbreak contact matrix in Wuhan. D-F Same as A-C, but for 

Shanghai.   

 

Figure 2. A Estimated R0 obtained with the outbreak contact matrix, as a function of baseline R0 derived 

from the regular weekday contact matrix, where the transmission rate is held constant. The solid light 

grey rectangle represents the region where the R0 in the outbreak situation is under the epidemic threshold. 

The shaded dashed black rectangle represents a plausible range of R0 values in the early phase of the 

COVID-19 epidemic, as estimated in the literature. B Infection attack rate a year after the initial case of 

COVID-19 as a function of baseline R0, derived from the regular weekday contact matrix. The 

corresponding value of R0 for the outbreak situation can be seen in panel A. The shaded colored areas 

represent 95%CI. C As A, but for Shanghai only and including two scenarios of contact patterns reduction: 

(i) during vacations (Vacation) and (ii) during regular weekdays, after removing all contacts occurring in 

school setting (No schools). D Daily incidence of new infections for the four scenarios presented in panel 

C (median and 95%CI). The inset shows the mean infection attack rate after a year. 
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